

Fault Analysis in RTL

microarchitectures and

HW/SW countermeasures

Johan Laurent, Vincent Beroulle, Christophe Deleuze

Grenoble LCIS, Valence

Firstname.Lastname@lcis.grenoble-inp.fr

Florian Pebay-Peyroula

CEA-Leti, LSOSP

florian.pebay@cea.fr

1

Agenda

 Introduction

– LCIS Lab/CTSYS team

– Project foundations

– Security evaluation platforms and problematics

– Case study and goals

 VerifyPin case study

 Conclusion

2

Introduction

LCIS/CTSYS team

 LCIS: COMUE UGA lab located in Valence

 CTSYS: 9 researchers on the « Security of

embedded systems and distributed systems »

- Interdisciplinarity: taking into account interaction

between hardware and software

3

Introduction

Project foundations

4

RTL

FAULT

MODEL

RTL

FAULT

INJECTION

RTL

CM

DESIGN

Localized fault attacks (laser, EM, etc)

Automatic RTL Fault Model Extractor and Simulator

Automatic HW CM Generator

Validated with laser on

28 nm Bulk (STM)

ANR LIESSE

SEU

/

MBU

Introduction

Security evaluation platforms

 Embedded software developers need tools to:
– Analyze the hardware threats to demonstrate the vulnerabilities

– Perform early evaluation of their designs and countermeasures

 2 platforms: HW-based vs Sim-based Fault Injection

5

HW injection for evaluation of the

system

RTL

Fault

Model

RTL

Fault

Injection

Board for

HW

injection

Target

MCU

Host PC

SereneIoT Project

Cross Layer fault model for early

security HW/SW co-simulation of

the system

SW

Fault

Model

Secure-RTL Project

SEU/ MBU

Introduction

Simulation-based security

evaluation platform

 Typical SW fault models

do not take into account

HW microarchitecture

 HW hidden register fault

effects can bypass SW CM

 Typical Design Flow

6

Add of

inefficient

SW CM
Register-file

x0

x1

x2

…

PC

ALU

Instruction
memory

Data memory Hidden

Hidden

Hidden

Hidden

Hidden

Introduction

Simulation-based security

evaluation platform

 Analysis of HW RTL

microarchitecture: new

SW Fault Models

 SW Fault injection for

detecting security

breaches

 New SW (or HW) CM to

prevent security

breaches

 HW/SW Co-design Flow

(RISC-V opportunities)

7

Add of

efficient

HW/SW

CM

Easier

monitoring

of fault

propagations

(even in hidden
registers)

Introduction

Case study context and goals

 Case study on a secure code : VerifyPIN

– from FISCC (Fault injection and Simulation Secure

Code Collection) proposed by Verimag

– with HW fault simulation on RISC-V Rocket

processor (RTL)

 Goals:

– To highlight the importance of hidden registers in the

processor pipeline

– New SW CM proposals

8

Agenda

 Introduction

 VerifyPin case study

– VerifyPin SW CM and description

– RISC-V Rocket : forwarding detection

– Cross Layer SW fault model extraction

– New fault attacks and SW CM

 Conclusion

9

Case study

VerifyPIN

 VerifyPIN: simple code comparing 4-digit PIN

values

 8 versions of SW CM:

- Hardened Booleans

- Check loop counter at the end

- Double boolean tests

- Inlined calls

- Step counter

10

Case study

VerifyPIN

11

diff=FALSE; status=FALSE; //hardened booleans

for(i=0 ; i<4 ; i++){

 if(userPIN[i]!=cardPIN[i])

 diff=TRUE;
}

if(i != 4) countermeasure(); //check loop counter

if(diff==FALSE)
 if(FALSE==diff) //double tests

 status=TRUE;

 else

 countermeasure();

else status=FALSE;

return status;

Pseudo-code of the application

Case study

RISC-V

 RISC-V open HW processor architecture:

LowRISC v0.2., 64-bit Rocket core implementation

12

Reg-
file MSB

LSB

FWD

FWD detect

2

2

6
2

6
4

D-cache

0

6
4

Instruction
Decode

Excecute Memory Write-
Back

ID

MEM

WB

ALU

Example of a data

hazard

ADD x3 = x1 + x2

ADD x4 = x3 + x2

Diapo 16: pour être encore plus précis, le

forwarding est déjà actif en temps normal (la

valeur 0 est implémentée comme du

forwarding). La faute permet de changer l'étage

qui est forwardé : au lieu de forward la valeur

0, on forward le résultat de l'instruction

précédente. Avec le schéma de la slide 13: le

MUX de l'étage Execute est sensé envoyer la

valeur 0, mais en fautant LSB, il envoie ce qui

est dans l'étage Memory.

Forwarding detection

Cross Layer SW Model Extraction

SW Faulty Behavior Characterization

 Analysis of HW RTL microarchitecture: new SW

Fault Models

13

µP RTL

SW

Injection

icontext

itargetn

icontext

Instruction atomic

contexts (ASM)

i_initn

i_faultedn

i_endn

New SW fault

models (ASM)

SEU/ MBU

icontext

itarget1

icontext

SWF0

SWFn

Case study

SW fault models characterization

14

Instruction Origin Faulty behaviour

Branch Prevent the branch from being taken

Mux_1 or Mux_2 Comparison to 0 instead of one of the arguments.

ALU_op Test inversion(4)

Write_enable Normal operation, plus set one GPR to zero or one (3)

 (not represented) Execution of the following instruction, even if branch is taken (2)

Write_enable Prevent the result from being written into register-file (1)

Branch Jump in addition to the normal operation (only if the result of the ALU is odd) (3)

Mux_1 or mux_2 Replace one argument with 0

ALU_op Perform another operation(4)

Write_enable Prevent the value read from being written into register-file (1)

Ctrl_mem Prevent the reading and write the address into destination GPR.

ALU_op Subtraction instead of addition for address calculation.

Mem_cmd Write last written data in memory, and write the address into destination GPR.

Mem_cmd Normal load operation, then write last written value in memory.

Mem_cmd Normal load operation, then write in memory the sum of loaded value and the last written value.

Ctrl_mem Prevent the store operation.

ALU_op Subtraction instead of addition for address calculation.

Write_enable Normal store operation, and write the address into a GPR (depending on the address offset).

En_store Write last written value instead of the new one.

Mem_cmd Write new value XOR last written value.

Write_enable Prevent return address from being written in destination GPR.

Mux_2 Write PC instead of PC+4 for the return address.

Jal Prevent the jump from happening

 (not represented) Execution of the following instruction(2)

Branch

R-type

Load

Store

Jump (jal)

Here faults are injected in

control signals only

Instruction Origin Faulty behaviour

Branch Prevent the branch from being taken

Mux_1 or Mux_2 Comparison to 0 instead of one of the arguments.

ALU_op Test inversion(4)

Write_enable Normal operation, plus set one GPR to zero or one (3)

 (not represented) Execution of the following instruction, even if branch is taken (2)

Write_enable Prevent the result from being written into register-file (1)

Branch Jump in addition to the normal operation (only if the result of the ALU is odd) (3)

Mux_1 or mux_2 Replace one argument with 0

ALU_op Perform another operation(4)

Write_enable Prevent the value read from being written into register-file (1)

Ctrl_mem Prevent the reading and write the address into destination GPR.

ALU_op Subtraction instead of addition for address calculation.

Mem_cmd Write last written data in memory, and write the address into destination GPR.

Mem_cmd Normal load operation, then write last written value in memory.

Mem_cmd Normal load operation, then write in memory the sum of loaded value and the last written value.

Ctrl_mem Prevent the store operation.

ALU_op Subtraction instead of addition for address calculation.

Write_enable Normal store operation, and write the address into a GPR (depending on the address offset).

En_store Write last written value instead of the new one.

Mem_cmd Write new value XOR last written value.

Write_enable Prevent return address from being written in destination GPR.

Mux_2 Write PC instead of PC+4 for the return address.

Jal Prevent the jump from happening

 (not represented) Execution of the following instruction(2)

Branch

R-type

Load

Store

Jump (jal)

Table 1: Faulty behaviours for different instructions. Faults marked with a number can have side effects or consequences

that are explained in the part about complex faults.

New SW faulty behaviors

are characterized

SWF1

ADD x3 = x1 + x2

ADD x4 = x3 + x2

SWF1: new SW fault model

// skip

ADD x4 = x1 + x2 + x2

Due to forwarding, x4 is fault free

but x3 does not store x1+x2

…

…

…
…

…

…
…

Case study

New fault attacks

 Hardened boolean : to be safe against single bit fault

injection (false=0x55, true=0xAA)

15

ADDI a5 = 0 + 0x55

…

ADDI a5 = 0 + 0x55

ADDI a5 = 0 + 0x55

…

ADDI a5 = 0x55 + 0x55 = 0xAA!!!

Single bit fault injection during forwarding

Reg
-file MSB

LSB

FWD

FWD detect

2

2

6
2

6
4

D-cache

0

6
4

Instruction Decode Excecute Memory Write-
Back

I
D

MEM

WB

ALU

Forwarding of the 0 value

Case study

New fault attacks

16

 Context: A countermeasure checks if the

loop was executed 4 times

 Goal: Safe-error attacks

– Thanks to fault injection, make the CM trigger or not

depending of the value of the Secret Digit

 How to do it:

 Force the use of the Secret Digit instead of the loop

counter in the loop comparison

Make the countermeasure trigger or not

depending on the value of a Secret Digit

(SD)

knows if SD is ≤ 3 or > 3.

SAFE-ERROR

Case study

New fault attacks

17

How to protect: Simply swap arguments!

if(userPIN[i] != cardPIN[i]) if(cardPIN[i] != userPIN[i])

Secret Digit<3
0…0

10

1

ALU

Loop counter 10

1
0

Secret Digit<3
0…0

10

0

1
0 ALU

Loop counter 10

LSB

MSB 0…010

i=2+1=3 i=i+1

6
2

6
2

No fault
detection

0…0XX 0…0XX

Conclusion

 Hidden registers in complex RTL

microarchitectures can generate complex faulty

behaviors

 Complex faulty behaviors create vulnerabilities

impossible to manage with typical SW CM only

 Cross layer analysis of the RTL microarchitecture is

a required step to design effective HW/SW CM

 Perspectives: Automate the vulnerability analyze for a

given application and a given processor architecture

18

Project funding

 Thank you for your attention!

 This work was funded thanks to the French

national program 'programme

d’Investissements d’Avenir, IRT Nanoelec'

ANR-10-AIRT-05

19

