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Introduction 

LCIS/CTSYS team 

 LCIS: COMUE UGA lab located in Valence 

 CTSYS: 9 researchers on the « Security of 

embedded systems and distributed systems » 

- Interdisciplinarity: taking into account interaction 

between hardware and software 
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Introduction 

Project foundations 
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Introduction 

Security evaluation platforms 

 Embedded software developers need tools to: 
– Analyze the hardware threats to demonstrate the vulnerabilities 

– Perform early evaluation of their designs and countermeasures 

 2 platforms: HW-based vs Sim-based Fault Injection 
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Introduction 

Simulation-based security 

evaluation platform 

 Typical SW fault models 

do not take into account 

HW microarchitecture 

 HW hidden register fault 

effects can bypass SW CM 

 

 Typical Design Flow 
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Introduction 

Simulation-based security 

evaluation platform 

 Analysis of HW RTL 

microarchitecture: new 

SW Fault Models 

 

 SW Fault injection for 

detecting security 

breaches 

 

 New SW (or HW) CM to 

prevent security 

breaches 

 HW/SW Co-design Flow 

(RISC-V opportunities) 
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Introduction 

Case study context and goals 

 Case study on a secure code : VerifyPIN 

– from FISCC (Fault injection and Simulation Secure 

Code Collection) proposed by Verimag 

– with HW fault simulation on RISC-V Rocket 

processor (RTL) 

 Goals:  

– To highlight the importance of hidden registers in the 

processor pipeline 

– New SW CM proposals 
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Case study 

VerifyPIN 

 VerifyPIN: simple code comparing 4-digit PIN 

values 

 8 versions of SW CM: 

- Hardened Booleans 

- Check loop counter at the end 

- Double boolean tests 

- Inlined calls 

- Step counter 
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Case study 

VerifyPIN 
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diff=FALSE; status=FALSE; //hardened booleans 

 

for(i=0 ; i<4 ; i++){ 

 if(userPIN[i]!=cardPIN[i]) 

  diff=TRUE; 
} 

 

if(i != 4) countermeasure(); //check loop counter 

 

if(diff==FALSE)  
 if(FALSE==diff)  //double tests   

  status=TRUE; 

 else  

  countermeasure(); 

else status=FALSE; 
 

return status; 

Pseudo-code of the application 



 
   

Case study 

RISC-V 

 RISC-V open HW processor architecture: 

LowRISC v0.2., 64-bit Rocket core implementation 
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Example of a data 

hazard 

ADD x3 = x1 + x2  

ADD x4 = x3 + x2  

Diapo 16: pour être encore plus précis, le 

forwarding est déjà actif en temps normal (la 

valeur 0 est implémentée comme du 

forwarding). La faute permet de changer l'étage 

qui est forwardé : au lieu de forward la valeur 

0, on forward le résultat de l'instruction 

précédente. Avec le schéma de la slide 13: le 

MUX de l'étage Execute est sensé envoyer la 

valeur 0, mais en fautant LSB, il envoie ce qui 

est dans l'étage Memory. 

Forwarding detection 



 
   

Cross Layer SW Model Extraction 

SW Faulty Behavior Characterization 

 Analysis of HW RTL microarchitecture: new SW 

Fault Models 
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Case study 

SW fault models characterization 
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Instruction Origin Faulty behaviour

Branch Prevent the branch from being taken

Mux_1 or Mux_2 Comparison to 0 instead of one of the arguments.

ALU_op Test inversion(4)

Write_enable Normal operation, plus set one GPR to zero or one (3)

 (not represented) Execution of the following instruction, even if branch is taken (2)

Write_enable Prevent the result from being written into register-file (1)

Branch Jump in addition to the normal operation (only if the result of the ALU is odd) (3)

Mux_1 or mux_2 Replace one argument with 0

ALU_op Perform another operation(4)

Write_enable Prevent the value read from being written into register-file (1)

Ctrl_mem Prevent the reading and write the address into destination GPR.

ALU_op Subtraction instead of addition for address calculation.

Mem_cmd Write last written data in memory, and write the address into destination GPR.

Mem_cmd Normal load operation, then write last written value in memory.

Mem_cmd Normal load operation, then write in memory the sum of loaded value and the last written value.

Ctrl_mem Prevent the store operation.

ALU_op Subtraction instead of addition for address calculation.

Write_enable Normal store operation, and write the address into a GPR (depending on the address offset).

En_store Write last written value instead of the new one.

Mem_cmd Write new value XOR last written value.

Write_enable Prevent return address from being written in destination GPR.

Mux_2 Write PC instead of PC+4 for the return address.

Jal Prevent the jump from happening

 (not represented) Execution of the following instruction(2)

Branch

R-type

Load 

Store

Jump (jal)

Here faults are injected in 

control signals only 

Instruction Origin Faulty behaviour

Branch Prevent the branch from being taken

Mux_1 or Mux_2 Comparison to 0 instead of one of the arguments.

ALU_op Test inversion(4)

Write_enable Normal operation, plus set one GPR to zero or one (3)

 (not represented) Execution of the following instruction, even if branch is taken (2)

Write_enable Prevent the result from being written into register-file (1)

Branch Jump in addition to the normal operation (only if the result of the ALU is odd) (3)

Mux_1 or mux_2 Replace one argument with 0

ALU_op Perform another operation(4)

Write_enable Prevent the value read from being written into register-file (1)

Ctrl_mem Prevent the reading and write the address into destination GPR.

ALU_op Subtraction instead of addition for address calculation.

Mem_cmd Write last written data in memory, and write the address into destination GPR.

Mem_cmd Normal load operation, then write last written value in memory.

Mem_cmd Normal load operation, then write in memory the sum of loaded value and the last written value.

Ctrl_mem Prevent the store operation.

ALU_op Subtraction instead of addition for address calculation.

Write_enable Normal store operation, and write the address into a GPR (depending on the address offset).

En_store Write last written value instead of the new one.

Mem_cmd Write new value XOR last written value.

Write_enable Prevent return address from being written in destination GPR.

Mux_2 Write PC instead of PC+4 for the return address.

Jal Prevent the jump from happening

 (not represented) Execution of the following instruction(2)

Branch

R-type

Load 

Store

Jump (jal)

Table 1: Faulty behaviours for different instructions. Faults marked with a number can have side effects or consequences 

that are explained in the part about complex faults. 

  

New SW faulty behaviors 

are characterized 

SWF1 

ADD x3 = x1 + x2  

ADD x4 = x3 + x2  

SWF1: new SW fault model 

// skip 

ADD x4 = x1 + x2 + x2  

Due to forwarding, x4 is fault free 

but x3 does not store x1+x2 

… 

… 

… 
… 

… 

… 
… 



 
   

Case study 

New fault attacks 

 Hardened boolean : to be safe against single bit fault 

injection (false=0x55, true=0xAA) 
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ADDI a5 = 0 + 0x55 

…  

ADDI a5 = 0 + 0x55  

ADDI a5 = 0 + 0x55 

…  

ADDI a5 = 0x55 + 0x55 = 0xAA!!!   

Single bit fault injection during forwarding 
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Case study 

New fault attacks 
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 Context: A countermeasure checks if the 

loop was executed 4 times 
 

 Goal: Safe-error attacks 

– Thanks to fault injection, make the CM trigger or not 

depending of the value of the Secret Digit 

 How to do it: 

 Force the use of the Secret Digit instead of the loop 

counter in the loop comparison 

Make the countermeasure trigger or not 

depending on the value of a Secret Digit 

(SD) 

knows if SD is ≤ 3 or > 3. 

 

SAFE-ERROR 



 
   

Case study 

New fault attacks 
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How to protect: Simply swap arguments! 

if(userPIN[i] != cardPIN[i])  if(cardPIN[i] != userPIN[i]) 

Secret Digit<3 
0…0 

10  

1 
 

ALU 

Loop counter 10 
 
 

1 
0 
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0…0 

10  

0 
 

1 
0 ALU 

Loop counter 10 
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MSB 0…010 

i=2+1=3 i=i+1 

6 
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6 
2 

No fault 
detection 

0…0XX 0…0XX 



 
   

Conclusion 

 Hidden registers in complex RTL 

microarchitectures can generate complex faulty 

behaviors 

 Complex faulty behaviors create vulnerabilities 

impossible to manage with typical SW CM only  

 Cross layer analysis of the RTL microarchitecture is 

a required step to design effective HW/SW CM 

 

 Perspectives: Automate the vulnerability analyze for a 

given application and a given processor architecture 
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