
A compiler approach to

Cyber-Security

François de Ferrière

Compilers Expertise Center

STMicroelectronics - Grenoble, France

JAIF 2019, May 23rd, 2019

Securing IOT nodes 2

• IOT nodes

• Fast cryptographic primitives for confidentiality, integrity, authenticity & privacy

• Power and performance constraints

• Long lifespan

• Highly connected

• Subject to physical attacks

• Side Channel Attacks

• Fault injection attacks

• Aiming at

• Obtain sensitive data

• Bypass protection

• Reverse engineering

• Source level protections

• Easy to implement

• But compiler optimizations tend to remove redundant code

• Require some implementation tricks and may be difficult to maintain

• Demoting compiler optimizations results in poor performance and code size

• Assembly level protections

• The compiler made heavy transformations to reach good performance

and code size

• Difficult to map source code from assembly instructions

• Difficult to find available resources for adding extra code after

aggressive register allocation and code scheduling

• Higher risk of introducing errors while implementing countermeasures at this level

• Aims at protecting against

• Instruction skip

• Modification of instructions or data

Software-Based Countermeasures 3

The Idea 4

C Code

Software

Protection

ST processors

& ARM

Front
end

LLVM
IR

With

Software Protection

Back
end

Machine
Code

LLVM
Optimizer

• A compiler approach

• Instead of struggling against the compiler, make the compiler work for us

• No need to modify the source code of an application

• No need to demote compiler optimizations

• Security code added by the compiler is part of the code to generate

• Efficient register allocation and instruction scheduling

History 5

• EDDI : Error Detection by Duplicated Instructions in super-scalar processors

N. Oh, P.P. Shirvani, E.J. McCluskey - IEEE Transactions on Reliability 2002

• Duplicate instructions and use different registers

• Duplicate memory locations

• Check points at side effects

• SWIFT : Software Implemented Fault Tolerance

G.A. Reis, J. Chang, N. Vachharajani, R. Rangan, D.J. August – CGO 2005

• Designed to reduce performance and code size impact

• No duplicated storage, no duplicated loads/stores

• Control-flow checking

• Fault Model

• Single fault on any instruction

• Protection is guaranteed if applied on whole program

• Memory is protected by hardware (ECC, …)

Introducing LLVM SecSwift 6

• Our implementation in LLVM: Secure Swift -> SecSwift

• Abort on fault detection

• SecSwift consists in two different transformations

• SecSwift Duplicate

• Duplicate the computation flow inside functions

• Duplicate parameters and return values on function calls

• Check the equality of values at synchronization points

• SecSwift Control-Flow Integrity

• Branch instructions inside a function

• Call and return instructions between functions

• Propagate a signature along control-flow paths

• Check validity at synchronization points

• Can be activated independently

• Combine efficiently and benefit from each other

SecSwift Duplicate 7

• Duplicate instructions

• Done on the intermediate representation of the LLVM compiler

• Check equality at synchronization points (store, return)

• Counter-measure for instruction skip

• Duplicated instructions go through the backend

• The compiler will not remove the redundant code

• The redundant code is fully integrated with the original code for reg-alloc and scheduling

int neq = 0, _DUP_neq = 0;

for (int i = 0, _DUP_i = 0; i < N; i++, _DUP_i++) {

neq |= input[i] ^ expected[i];

_DUP_neq |= input[_DUP_i] ^ expected[_DUP_i];

}

secswift_trap(i == _DUP_i);

secswift_trap(neq == _DUP_neq);

SecSwift Inter-Procedural DUP 8

• Parameters and return values duplication on function calls

• Change calling convention

• Counter-measure for corruption of parameters and return values

• A new function prefixed with _SECSWIFT_ is created to implement SecSwift IPDUP

• The original function is kept

• A dead function elimination pass after SecSwift will remove unused functions

<int, int> _SECSWIFT_is_invalid(int *input, int *_DUP_input, size_t N, size_t _DUP_N) {

....

return <neq, _DUP_neq>;

}

SecSwift Duplicate 9

• Duplication is done after optimizations on the LLVM IR

• Reduces the performance and code size impact of SecSwift

• Use of an intrinsic function to hide copies of variables

• Generated as an opaque pseudo COPY operation in the Target Machine LLVM IR

• The register allocator will allocate duplicated variables in different registers

• Replaced by a real copy instruction after register allocation

• Not all instructions are duplicated

• Branch instructions are handled by the SecSwift CFG protection

• Store instructions are not duplicated, since memory is out of the scope of SecSwift

• Some values are duplicated by a copy of the result of the original instruction

• On calls and on volatile load instructions

• On instructions with “undef” operands

• Might have pending caveats

• Not 100% coverage for now

• e.g. prologue/epilogue expansion done after LLVM IR

SecSwift Control-Flow 10

• Control-flow checking: Dynamically checks that branches reach the expected target

• Counter-measure for fault or skip of branch instructions

• Based on the property: A(AB)=B

• A static signature is assigned to each basic block: GSR (General Signature Register)

• A dynamic transfer signature is computed on control-flow edges: RTS (Runtime Transfer Signature)

• A check on the signature is inserted at the beginning of basic blocks which have side effect instructions

Example 1 Example 2

int GSR = 31155, RTS = 31155 ^ 40106;

for (int i = 0; i < N; i++) {

GSR ^= RTS;

neq |= input[i] ^ expected[i];

RTS = i < N ? 0 : 40106 ^ 642;

}

GSR ^= RTS;

secswift_assert(GSR == 642);

SecSwift Control-Flow 11

• Why a XOR ?

• Mathematical properties

• Fewer gates, compared to an add or mul

• Why a GSR and RTS ?

• Creates a chain of updates of the GSR value

• If one GSR=GSRRTS is not executed correctly

• Because of a fault on the instruction

• Because of an incorrect control-flow transfer

• Because of an incorrect value in GSR or RTS

• The error will be propagated in the next computations of the GSRs

• No need to insert many checks

• Only before instructions that do side effects

• GSR serves as a redundant duplicate for the Program Counter

SecSwift Inter-Procedural CFG 12

• Signatures are statically assigned to functions for which IPCFG has been enabled

• A hash of the function’s name is used to compute the signatures

• Two signatures are assigned to each function

• One for the entry point

• The other one for all the exit points

• Two parameters, IPGSR and IPRTS, are added on functions protected by IPCFG

• They replace the GSR and RTS variables on function calls and returns

void g(int *IPGSR, int IPRTS) {

*IPGSR = *IPGSR IPRTS;

…….

*IPGSR = *IPGSR IPRTS IDgx;

return;

}

void f(int *IPGSR, int IPRTS) {

*IPGSR = IDfe;

…..

g(IPGSR, IDfe IDge);

*IPGSR = *IPGSR IDgx;

……

}

LLVM Implementation Details 13

• SecSwift passes are implemented at the LLVM IR level

• Two generic passes

• One module pass to implement IPDUP and IPCFG transformations

• One function pass to implement DUP and CFG transformations

• Added at the very end of the LLVM middle-end passes

• Do not interfere with general optimizations

• The pass of Global Dead Function Elimination is run again after SecSwift

• Eliminate dead functions after the application of SecSwift IPDUP and IPCFG transformations

• Very limited modifications in the target backend

• We use intrinsic functions and pseudo instructions

• To prevent copies from being coalesced in the early passes of the Code Generator

• To generate target dependent code for the SecSwift checks between values

• They are lowered to real target code before register allocation

• Support for SecSwift IPDUP on return values

• Target dependent code on return values duplicated by SecSwift

LLVM Implementation Details 14

• SecSwift Activation

• Each SecSwift transformation can be enabled/disabled independently

• dup : Duplication of the data flow at basic block level

• cfg : Control-flow integrity checking at basic block level

• ipdup : Duplication of function parameters and return value

• ipcfg : Control-flow integrity checking on call and return instructions

• Command line options apply to all functions in a file

• -fsecswift-…

• Function attributes

• __attribute__((secswift(…, …)))

• Override command line options

• Fine tuning of functions on which SecSwift transformations will be applied

LLVM Implementation Details 15

• Pragma

• #pragma secswift(…, …)

• Override command line options and function attributes

• Apply to the next single instruction or to the next block of instructions

• Only ‘dup’ and ‘cfg’ are meaningful

• Reuse the implementation of the “OpenMP Captured” feature

• The instructions are outlined into a “captured” function

• Function attributes are set to the captured function to pass SecSwift options

• SecSwift is run on captured functions as on other functions

• The captured function is inlined back into its original function at the end of the SecSwift passes

• SecSwift options are passed from CLANG to LLVM by means of LLVM function attributes

• Fully validated and functional in LTO mode

Is the generated code more robust ? 16

• Historically evaluated “by hand”

• Security experts analyze software protection implemented at source level

• Then, check in generated code that protections are still there

• The compiler must now be part of the certification process

• Counter-measures are implemented there

• Tools are needed to improve the evaluation process

• Simulator with fault injection capability

• Simple solutions currently in use, based on debugger tools

• gdb + QEMU on ARM

Is the generated code more robust ? 17

• Evaluation on a simple string compare function

• Count the number of successful attacks

• Success if mcompare returns ‘0’ on different strings

• Attack is a single skip of an instruction

• Repeated over every static instruction in the function

• -O2: 15 instructions, 13% successful attacks

• -O2 -sec-dup: 53 instructions, 7% succesful attacks

• -O2 -sec-cfg: 34 instructions, 2% successful attacks

• --O2 -sec-cfg+dup: 52 instructions, 0% successful attacks

• -O2 -sec-ipcfg+ipdup: 60 instructions, 0% successful attacks

• Attack is a clear of a register

• 100 random pairs instruction/Rx

• -O2: 15 instructions, 3% successful attacks

• -O2 -sec-dup: 53 instructions, 3% succesful attacks

• -O2 -sec-cfg: 34 instructions, 4% successful attacks

• --O2 -sec-cfg+dup: 52 instructions, 2% successful attacks

• -O2 -sec-ipcfg+ipdup: 60 instructions, 0% successful attacks

int mcompare(unsigned char* s1, unsigned char* s2,

unsigned int bytelen) {

char res = 0;

int i;

for (i = 0; i < bytelen; i++) {

res |= s1[i] ^ s2[i];

}

return res;

}

How much for this ? 18

• Evaluation done on ARM Cortex-M0, with options –Oz –flto

• On a set of 22 benchmarks (eembc, audio/video, dhrystone, coremark, …)

• Performance impact (QEMU instruction count)

• About 2x slower in average, between 1.5x to 5x

• Major contribution is -fsecswift-dup

• -fsecswift-cfg -fsecswift-ipcfg alone is 50% slower in average, 3x at most

• -fsecswift-ipdup alone has negligible impact

• Code size impact

• About 3x larger in average, between 1.5x to 4x larger

• -fsecswift-dup is 2.5x larger in average, 3.5x at most

• -fsecswift-cfg -fsecswift-ipcfg is 2x larger in average, 3.5x at most

• -fsecswift-ipdup alone has negligible impact

• Not the whole application code need to be protected

• Only safety critical application parts

• Fine scoping through pragmas and function attributes

• SecSwift impact on performance and code size is comparable to compiling at –O0 without protection

Perspectives 19

• Continuous race between attacks and countermeasures

• Fault attacks

• More and more precise attacks

• Timing of the attacks

• Very precise location on a chip

• Synchronized multiple attacks

• Countermeasures

• Protection against skip of multiple instructions has been proposed

• Add some randomization

• dead-code

• random memory location

• No single hardware or software protection, both are needed

Conclusion 20

• Manually implemented software protection is too limited

• Sophistication of attacks

• Complexity of countermeasures

• Risk on time-to-market

• We provide compilation tools that enable security hardening transformations

• That would not be reasonably doable by hand – productivity

• That can be local enough to stay limited in resource demand increase - controllability

• That can be global enough to treat arbitrary code bases - scalability

• That play well together - composability

• That are semantically correct for already semantically correct code – soundness

• New roles for the security experts

• Propose new or adapted software counter-measures

• Validate the counter-measures in the compiler rather than in the final application code

• Determine which counter-measure are needed on which part of an application

Thanks for your attention

francois.de-ferriere@st.com

21

