-‘ AGENCE NATIONALE DE LA RECHERCHE
"

SORBONNE
b UNIVERSITE

Fault attack vulnerability assessment of binary code

Journée thématique sur les attaques par injection de fautes [JAIF'19], Minatec, Grenoble

Mai 23, 2019

Jean-Baptiste Bréjon
Emmanuelle Encrenaz
Karine Heydemann
Quentin Meunier
Son-Tuan Vu

Sorbonne Université, CNRS, Laboratoire d'Informatique de Paris 6, F-75005 Paris, France

JB. Bréjon JAIF'19 1/21

Plan

o Context

o Our approach to vulnerability Assessment
o Results exploitation: Security Metrics

e Implementation in a tool: RobustB

o Use-Cases

o Conclusion

JB. Bréjon JAIF'19 2/21

Context

o Embedded systems is now a prime target to attackers as they increasingly
manipulate sensitive data.

o Fault attack is real threat to their security: bypass security mechanisms,
performs privilege escalation, ... [Yuce et al. 2018]

How can we protect from them? — Software protections
o Can be implemented at all code levels: Source, IR, ASM
A\ Compiler optimisations and back-end can alter/remove them
— Their design follows a trial-and-error process:
o Code review — error prone
 Fault injection campaign — require costly equipment and specific skills

— Need a more efficient/automatic way to assess the security of low-level
code

JB. Bréjon JAIF'19 3/21

Vulnerability Assessment

Different approaches to low-level vulnerability assessment have been explored

» Symbolic execution + model-checking [Pattabiraman et al. 2013]
o Mutants + model-checking [Given-Wilson et al. 2018]
 Simulation [Dureuil 2016]
Vulnerability assessment approaches face a precision vs speed trade-off

Our objective: precision and exhaustiveness

e From the binary
o Combines static analysis, dynamic analysis and formal methods

JB. Bréjon JAIF'19 4/21

Overview

B .

ihatd _|, Binary I | Vulnerability I Lstof

Code region I Analysis | I Analysis | vulnerabilities
A

Fault models
Security property

Search for the vulnerabilities (i.e. invalidation of the security property) of a
code region in a binary to a fault model (e.g. instruction skip)

Initial values

Registers
Memory locations

o Equivalence-checking: comparing a
non-faulty execution with a faulty one
o The comparison is carried out under the Reference Faulty %
same configuration of inputs Execution Execution
o The security property defines the elements
5 o Final val Final val
(i.e. register) to be compared at the end of ME#%;%;;E;S ” Me;,:ﬂ%;yvljc:;
both executions
\Security property/

JB. Bréjon JAIF'19 5/21

Overview

Bin+ary
Code region

Fault models
Security property

Step 1 Step 2 Step 3
Binary Paths Vulnerability
Analysis Enumeration Analysis
Static LZJ: P;)gﬁrsence__formal Model_’ List of N
| | SMT solving | vulnerabilities
Dynamic —contextl 2‘2;:)aFtahl§lty]

o 1 - Extract a representation of the code region and Context

e 2.1 - Determine the possible execution paths within the code region

e 2.2 - Single fault injection on the possible execution paths

o 3 - Search for vulnerabilities by formal verification of a non-equivalence

property (SMT)

= Vulnerability list including their locations

JB. Bréjon

JAIF'19

6/21

Information Extraction From the Binary

Binary

Other area block

CFG

Target
Regjon

Static analysis

e CFG construction + Blocks order

JB. Bréjon

Block A

Block B

bound 1

Block D

Block C

bound 2
=1

Other area block

~
> D
~

Dynamic/symbolic analysis
o Extracts execution contexts of the
code region

o Extracts loop bounds within the
code region

JAIF'19

7/21

Determining the Possible Execution Paths

o Static bounded unfolding of the CFG

cFG EFG

JB. Bréjon JAIF'19 8/21

Determining the Possible Execution Paths

o Static bounded unfolding of the CFG

o Resulting paths accessibility test (SMT)
— Each instruction is modeled regarding its effect on a machine state model

Conditions : accessibility

Branch ad Branch
Initial state Final state

JB. Bréjon JAIF'19 8/21

Determining Faulty Execution Paths

Binary

Other area block

D Block A

Block B

Block D

Block C

Other are:

o A fault may alter the execution flow
— Possible execution paths are
recomputed after a fault injection

o CFG unfolding after the fault

o Takes into account the code layout
* Relaxed loop bounds

o Resulting paths are checked for
accessibility

JB. Bréjon JAIF'19

9/21

Robustness Analysis

e P_Orig — Original execution path
e P_Faulted — Faulty execution path

Initial values

Reg

isters
Memory locations e Same context (C)

¢ When the final values of some

memorizing elements differ, a
Reference Faulty % vulnerability is detected
Execution Execution Formula:
Access(P_Orig, C)A Access(P_Faulted, C)A Vuln

Final values Final values
Registers & Registers & — SAT: The fault in P Faulted leads to a
Memory locations Memory locations - —
contents contents vulnerability

‘KSecurity property/

» Repeating this process for all faults on all injection points produces a vulnerability list

JB. Bréjon JAIF'19 10/21

Results Synthesis

o Vulnerability list is cumbersome to analyse

« How dangerous is each vulnerability?
e How to compare the vulnerabilities of two different implementations?

o Need for a synthetic view
e Introduction of three security metrics

e Instruction sensitivity level
e Average number of vulnerabilities in paths
e Vulnerabilities density

JB. Bréjon JAIF'19 11/21

Paths Probabilities

A vulnerability appearing on a path should be weighted differently than one
appearing on another path depending on the likelihood of their path.

CFG EFG
A A
05 0.5
B ound 1 B C

0.5 0.5
Vs

S
ul
o

A 0.

B
]
@]

o By default: paths have equal Path Blocks P(path)
probability plL A-B-B-D 05

o Ideally: user can define the p2 A-C-C-D 025
branches probability p3 A-C-D 0.25

JB. Bréjon JAIF'19 12/21

Instruction Sensitivity (IS)

IS(i): score reflecting instruction i sensitivity

IS(i) =Y pePaths P(p is taken) x NV;(p)

NV;(p): Instruction i #Vulnerabilities on
path p

Inst | Score

10 1=P(pl)+P(p2)+P(p3)

I1 1=2xP(pl)

12 0.5=P(p2) + P(p3)

Each vulnerable instruction occurence is
weighted relatively to the likelihood of the
path it appears on

*3| 10

A
0.5 0.5
N C
/1 0.5 0.5
e
O3
! N ! P(p3)=0.25
D D
oT 02
P(o1)=05 P(p2)=0.25

D

12 |=

Rank the instructions according to their sensitivity — helps the designer
to focus on the most sensitive instructions

JB. Bréjon

JAIF'19

13/21

Attack Surface (AS)

AS: average number of vulnerabilities on an execution path

| AS =X pepaths P(p is taken) x NV (p)

NV(p): #Vulnerabilities appearing on path p

4 vulnerabilities, on each example, weighted by paths probabilities

|;| 4

4
Po1=05 P(p2=05 P 1)=05
AS=4x05=2 AS=4x1=4

2 vulnerabilities found on average 4 vulnerabilities found on average

The higher the attack surface, the more the attacker will be able to inject a fault leading to a
vulnerability

JB. Bréjon JAIF'19 14/21

Normalized Attack Surface (NAS)

NAS: Average density of vulnerabilities

NAS =

AS AS

Y pePaths P(p is taken) x Ni(p) ~ ANI

Ni(p): Path p #lInstructions

ANI: Average number of instructions per path

Same vulnerabilities but different amount of instructions: affects vulnerability density

Odds for a randomly timed fault injection to

o}
Ppn=05 P2

AS=2+05+2+05=2
NAS =2/(100+100) = 0.01

lead to a vulnerability: 1%

JB. Bréjon

)=0.5

lead to a vulnerability: 10%

JAIF'19

x| 1010 X2 119
05 05 0.5 0.5
x| do 1(;[0 JF x| 10 10 |F
D2 ol D2

Pon=05 P(p2)=05

AS5=2%05+2%05=2
NAS =2/(10+10)=0.1

Odds for a randomly timed fault injection to

15/21

RobustB

o The approach has been implemented in a tool called RobustB
o Supports ARM thumb2 instruction set
o Formal models are in SMT-LIB standard (Z3, boolector, ...)

o The security property can now be given to RobustB directly from the source
code for more semantic and automatism (Thesis of Son-Tuan Vu)
o Implements 4 fault models
e Instruction skip
» Register corruption
e Instruction replacement
o Instruction bit set
 Uses angr [Shoshitaishvili et al. 2016] (binary analysis) and Capstone
(disassembly functionality)

JB. Bréjon JAIF'19 16/21

Use-case: VerifyPin

Description

 Belongs to the FISCC (Fault Injection and Simulation Secure Code
Collection) benchmarks, dedicated to fault injection analysis

o Compares a user PIN with a predefined PIN
e Authentication “OK" if PINs are identical, “"KO" otherwise

« Several versions of the function, each one combining different source-level
protections

Analysis

e When user PIN and predefined PIN differs the security property is
Authentication = “KO”

e 4 versions: 1 unprotected, 3 protected
o 2 optimisation levels: 00, 02
e Fault model: instruction skip

JB. Bréjon JAIF'19 17/21

Results

o Vulns: Raw number of vulnerabilities
« ANI: Average number of instructions per path

o RP: Number of paths in the original code

Protection Version Opt level | #RP #Vulns AS NAS ANI
None VerifyPing
Loop counter*2 VerifyPing
Double call VerifyPing
*
Result var*2 VerifyPing
Step counter(CFI)

o Four implementations of VerifyPin

JB. Bréjon JAIF'19 18/21

Results

o Vulns: Raw number of vulnerabilities
« ANI: Average number of instructions per path

o RP: Number of paths in the original code

Protection Version Opt level | #RP #Vulns AS NAS ANI
0o
N VerifyPi
one erifyPing o2
oo
L ter¥2 VerifyPi
oop counter erifyPing o
Double call VerifyPing 0o
02
*
Result var*2 VerifyPing 00
Step counter(CFI) 02

o Two optimisation levels

JB. Bréjon JAIF'19 18/21

Results

e Vulns: Raw number of vulnerabilities

+ ANI: Average number of instructions per path

o RP: Number of paths in the original code

Protection Version Opt level | #RP #Vulns AS NAS ANI
4
None VerifyPing 00
02 4
0o 15
Loop counter*2 VerifyPi
p counter WLERE .
Double call VerifyPing o 15
02 1
*
Result var*2 VerifyPiny 0o 15
Step counter(CFl) 02 1
JB. Bréjon JAIF'19 18/21

Results

e Vulns: Raw number of vulnerabilities

+ ANI: Average number of instructions per path

o RP: Number of paths in the original code

Protection Version Opt level | #RP #Vulns AS NAS ANI
4
None VerifyPing 00 %
02 4 54
Loop counter*2 VerifyPing o 15 127
02 1 28
Double call VerifyPing o 15 15
02 1 8
*
Result var*2 VerifyPiny 00 15 67
Step counter(CFl) 02 1 24
JB. Bréjon JAIF'19 18/21

Results

e Vulns: Raw number of vulnerabilities

+ ANI: Average number of instructions per path

o RP: Number of paths in the original code

Protection Version Opt level | #RP #Vulns AS NAS ANI
4 18.
None VerifyPing 00 % 8.37
02 4 54 10.38
Loop counter*2 VerifyPing o 15 127 .75
02 1 26 26
Double call VerifyPing o 15 15 L
02 1 8 8
Result var*2 . 0o 15 67 4.75
VerifyPiny
Step counter(CFl) 02 1 24 24
JB. Bréjon JAIF'19 18/21

Results

e Vulns: Raw number of vulnerabilities

+ ANI: Average number of instructions per path

o RP: Number of paths in the original code

Protection Version Opt level | #RP #Vulns AS NAS ANI
4 18. 2
None VerifyPing 00 % 8.37 0.25
02 4 54 10.38 0.41
Loop counter*2 VerifyPing o 15 127 .75 0.05
02 1 26 26 0.71
Double call VerifyPing o 15 15 L 0.01
02 1 8 8 0.17
Result var*2 . 00 15 67 4.75 0.03
VerifyPiny
Step counter(CFl) 02 1 24 24 0.48
JB. Bréjon JAIF'19 18/21

Results

e Vulns: Raw number of vulnerabilities

+ ANI: Average number of instructions per path

o RP: Number of paths in the original code

Protection Version Opt level | #RP #Vulns AS NAS ANI
4 18. 2 .
None VerifyPing o % 8.37 0.25 739
02 4 54 10.38 0.41 25.3
Loop counter*2 VerifyPing 00 15 127 7.75 0.05 149.1
02 1 26 26 0.71 49
Double call VerifyPing o 15 = L — 124.2
02 1 8 8 0.17 48
Result var*2 e 00 15 67 4.75 0.03 180.1
VerifyPiny
Step counter(CFl) 02 1 24 24 0.48 50

JB. Bréjon

JAIF'19

18/21

Results

o Vulns: Raw number of vulnerabilities
o ANI: Average number of instructions per path

o RP: Number of paths in the original code

Protection Version Opt level | #RP #Vulns AS NAS ANI
None VerifyPing 0o 4 96 18.37 0.25 73.9
02 4 54 10.38 0.41 253
Loop counter*2 VerifyPing oo 15 127 7.75 0.05 149.1
02 1 26 26 0.71 49
1 1 1 .01 124.2
Double call VerifyPing 00 > > 0.0
02 1 8 8 0.17 48
Result var*2 P oo 15 67 4.75 0.03 180.1
VerifyPiny
Step counter(CFI) 02 1 24 24 0.48 50

o VerifyPins is the least sensitive implementation (for all metrics) — Double
call bests targets the instruction skip fault model

JB. Bréjon JAIF'19 18/21

Results

o Vulns: Raw number of vulnerabilities
o ANI: Average number of instructions per path

o RP: Number of paths in the original code

Protection Version Opt level | #RP #Vulns AS NAS ANI

None VerifyPing 0o 4 96 18.37 0.25 73.9
02 4 54 10.38 0.41 25.3

Loop counter*2 VerifyPing 00 15 127 7.75 0.05 149.1
02 1 26 26 0.71 49

Double call VerifyPing 0 15 15 L 0E 124.2
02 1 8 8 0.17 48

Result var*2 P 00 15 67 4.75 0.03 180.1

VerifyPiny
Step counter(CFI) 02 1 24 24 0.48 50

 VerifyPing OO0 is the least sensitive version according to AS and NAS, the
number of raw vulnerabilities disagree

JB. Bréjon JAIF'19 18/21

Results

e Vulns: Raw number of vulnerabilities

o ANI: Average number of instructions per path

o RP: Number of paths in the original code

Protection Version Opt level | #RP #Vulns AS NAS ANI

None VerifyPing 0o 4 96 18.37 0.25 73.9
02 4 54 10.38 0.41 25.3

Loop counter*2 VerifyPing 00 15 127 7.75 0.05 149.1
02 1 26 26 0.71 49

Double call VerifyPing 0 15 15 L 0.01 124.2
02 1 8 8 0.17 48

Result var*2 P 00 15 67 4.75 0.03 180.1

VerifyPiny
Step counter(CFI) 02 1 24 24 0.48 50

o NAS metric shows the odds of a successful randomly timed attack. Higher

for O2 versions — smaller code + less paths

JB. Bréjon

JAIF'19

18/21

Results

e Vulns: Raw number of vulnerabilities

o ANI: Average number of instructions per path

o RP: Number of paths in the original code

Protection Version Opt level | #RP #Vulns AS NAS ANI

None VerifyPing 0o 4 96 18.37 0.25 73.9
02 4 54 10.38 0.41 25.3

Loop counter*2 VerifyPing oo 15 127 7.75 0.05 149.1
02 1 26 26 0.71 49

Double call VerifyPing 0 15 15 L 0.01 124.2
02 1 8 8 0.17 48

Result var*2 P oo 15 67 4.75 0.03 180.1

VerifyPiny
Step counter(CFI) 02 1 24 24 0.48 50

o VerifyPing: AS is higher for O0 version — less instructions = lower attack
surface. In protected versions: O2 optimisation level affected the protections.

JB. Bréjon

JAIF'19

18/21

Other use-cases

Source level hardened code analysis
o Impact of optimisation levels [Dureuil et al. 2016]
— Highlighted metrics usefulness to compare different, functionally identical,
code versions
o GCC vs Clang
— Highlighted redundant protections w.r.t. instruction skip and register
corruption fault models
Compile-time hardened code analysis
o Compile-time hardened loop construct [Proy et al. 2017]
— Validation of the robustness of the loop under the targeted fault model
— One vulnerability found: due to code placement (fault outside the loop
construct)
o Compile-time hardened code by instruction duplication [Barry et al. 2016]
— Validation of the robustness of the binary against instruction skip

JB. Bréjon JAIF'19 19/21

Conclusion

A tool for analysing binary code regions against single fault attacks

o Comparison of compilers, optimisation effects and protections
effectiveness on a use-case

» 3 security metrics synthetizing the results

Pros

o Automatic

o Formal verification (SMT) — exhaustiveness
o Contextual analysis

Cons

o Small code regions — speed of the analysis depends on the number of
possible paths and the number of memory accesses

o Exhaustive multiple faults — combinatorial explosion, but the approach does
not forbid it

JB. Bréjon JAIF'19 20/21

Thanks !

JB. Bréjon JAIF'19 21/21

Bibliography |

@ Thierno Barry, Damien Couroussé, and Bruno Robisson. “Compilation of a
Countermeasure Against Instruction-Skip Fault Attacks”. In: Proceedings of the
Third Workshop on Cryptography and Security in Computing Systems. ACM.
2016, pp. 1-6.

@ Louis Dureuil et al. “FISSC: a Fault Injection and Simulation Secure Collection”.
In: Proceedings of International Conference on Computer Safety, Reliability and
Security. Vol. 9922. LNCS. Trondheim, Norway: Springer Berlin / Heidelberg,
2016, pp. 3—-11. doi: 10.1007/978-3-319-45477-1_1.

@ Louis Dureuil. “Analyse de code et processus d’'évaluation des composants
sécurisés contre l'injection de faute”. PhD thesis. Université Grenoble Alpes, 2016.

@ Thomas Given-Wilson, Nisrine Jafri, and Axel Legay. “Bridging Software-Based
and Hardware-Based Fault Injection Vulnerability Detection”. In: (2018). url:
https://hal.inria.fr/hal-01961008/.

@ Karthik Pattabiraman et al. “SymPLFIED: Symbolic Program-Level Fault Injection
and Error Detection Framework.". In: [EEE Trans. Computers 62.11 (2013),
pp. 2292-2307.

@ Julien Proy et al. “Compiler-Assisted Loop Hardening Against Fault Attacks”. In:
ACM Transactions on Architecture and Code Optimization 14.4 (2017), p. 36.

JB. Bréjon JAIF'19 22/21

https://doi.org/10.1007/978-3-319-45477-1_1
https://hal.inria.fr/hal-01961008/

Bibliography Il

@ Yan Shoshitaishvili et al. “Sok:(state of) the art of war: Offensive techniques in
binary analysis”. In: Security and Privacy (SP), 2016 IEEE Symposium on. |EEE.
2016, pp. 138-157.

ﬁ Bilgiday Yuce, Patrick Schaumont, and Marc Witteman. “Fault attacks on secure

embedded software: threats, design, and evaluation”. In: Journal of Hardware and
Systems Security 2.2 (2018), pp. 111-130.

JB. Bréjon JAIF'19 23/21

	References

