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The CLAPs project [2018-20]

Partners

CEA-DACLE, CEA-DSYS, CESTI, INRIA Corse, Verimag PACSS

Objectives

Methods and tools for the design and deployment of
secure IoT solutions

I code robustness analysis against fault injection

I automated counter-measures integration

I attack detection mechanisms

I physical-level security analysis

Case study: Firmware Update / Bootloader
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Outline

Security of Bootloader and Firmware Updater

Robustness analysis of a Firmware Updater

Using monitors to detect fault injection

Some on-going work
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Secured BL-FU Control Flow [Atmel2013]1

Cryptographic functions: implemented in SW, dedi-
cated HW IPs, or SW+specific processor instructions

“System” components: implemented in SW, mostly
HW-dependant and/or supported by dedicated HW
(e.g. DMA for data movement)

Control logic: implemented in SW

(1) At02333: Safe and secure bootloader implementation for sam3/4
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Fault Injection Attacks applied to SBFU

Fault models, at the Instruction Set Architecture (ISA) level:

I Data alteration, down to the bit level.
I ROM / RAM, processor registers
I Bit flip, bit stuck-at
I Typically: modification of loop counters, crypto data, opcode

corruption.

I Instruction skip, instruction modification
I Typically: NOP execution, arbitrary jumps

I Modification of the control flow,
I e.g., test inversion
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(source-level) Robustness analysis of a FU with Lazart

Lazart

LLVM code

Robustness oracle

Fault model

Robustnes verdict (+ attack information)

Input

I the source code (LLVM) of the target application

I an “oracle”, specifying the expected security property

I a (source-level) fault model  effects of the ϕsycal attacks

Output

A robustness verdict
(+ attack statistics + non-robust executions + counter-measure metrics + . . . )
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A basic Firmware Updater (inspired from [Atmel2013])

I firmware transmission modeled as a buffer copy:
payload = sequence of page + actual page number

I each page copied byte/byte
I integrity check performed on each page

I verification performed upon transfer termination:
I is the number of pages received correct ?
I is the firmware integrity correct ?

I if yes, the copy is loaded as a new firmware
→ update successful, boot address is set
otherwise the copy is deleted
→ no update

I ghost variables added to specify the security properties
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Control-flow

triggered:=true
T

F

T

F
T

writePage
aborted:=true

corrupted:=true

T F

F
T

boot process

end

(set bootAddress)
loadFirmware

updated:=true

T

aborted:=true

corrupted:=true
F

deleteFirmware

T F

F

triggerUpdate?

dataReceived?

pageCompleted?

checkPageIntegrity?

lastPage?

pageNumber ok?

aborted?

ghost variables
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Security Properties

P1: do not load a corrupted firmware

1. the attacker requests for an update of a corrupted firmware

2. and breaks the verification steps

⇒ execution resumes with an incorrect firmware . . .

P1 ≡ ¬(triggered ∧ corrupted ∧ updated)

P2: do (correctly) load a correct firmware

1. the user requests for an update (e.g., in case of security patch)

2. the attacker prevents the update to succeed

⇒ execution continues with an out-of-date firmware . . .

P2 ≡ ¬(triggered ∧
((corrupted ∧ updated) ∨ (updated ∧ ldAddr 6= bootAddr)))
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Some results

About 64 experiments, combining:
I 2 fault models:

I test inversion
I data mutation: curPage, pageNumber, aborted, ldAddr

I 2 counter-measure levels
I no counter-measure (CM)
I duplicate twice each control-flow condition (CM)

Example of results obtained:

Fault model 1 flt - CM 2 flts - CM 1 flt - CM 2 flts - CM
P1 - test inversion 2 14 0 1

P1 - pageNumber 0 0 0 0

P1 - aborted 2 13 0 1

P2 - test inversion 1 5 0 1

P2 - loadAddress 1 0 0 1
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So what . . . ?

Confirm some expected behaviors
. . . but also exhibit some less expected ones, e.g.:

I no attacks on pageNumber mutation

I property P1 could be refined . . .

→ highlights critical execution paths w.r.t. security properties

Next steps

I refine the implementation (and/or use existing ones)
I memory layout
I firmware encryption

→ more detailed properties, dedicated specification language

I other counter-measures
(e.g., invariant synthesis for CFI, runtime-monitors, etc.)

I counter-measure analysis . . .

11 / 17



So what . . . ?

Confirm some expected behaviors
. . . but also exhibit some less expected ones, e.g.:

I no attacks on pageNumber mutation

I property P1 could be refined . . .

→ highlights critical execution paths w.r.t. security properties

Next steps

I refine the implementation (and/or use existing ones)
I memory layout
I firmware encryption

→ more detailed properties, dedicated specification language

I other counter-measures
(e.g., invariant synthesis for CFI, runtime-monitors, etc.)

I counter-measure analysis . . .

11 / 17



Runtime Verification, aka Monitoring
Monitoring is a verification method to analyse system executions
(at runtime).
I system is instrumented to retrieve the relevant information
I monitor analyses this information

Monitor produces verdict:

I Pass when execution
respects requirements

I Fail in case of a violation

Advantages:
I Lightweight & “easy” to deploy
I Verify the actual execution
I Rigorous method which provides formal correctness guarantees
I Compatible with other verification solutions

Inria specifies and implements monitors for the test inversion and
jump attacks. 12 / 17



Test Inversion Attack (simplified)

B

if (condition)

BT

eT (args)

BF

eF (args)

TrueFalse

Monitor:

1

eT (args) condition is True

eF (args) condition is False

Attack when:

I BF is executed and condition is True; or

I BT is executed and condition is False.

The monitor reports a violation if and only if there is a test
inversion attack (sound & complete).
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Jump Attacks – A (simplified) Example
begin
...
end

...
reset

Attack: interrupt execution of a basic block
using a forward jump.

Requirement: begin is followed by end before
a new occurrence of reset.

Monitor:

1 2 3
begin end

reset

Good execution:

I begin.end .reset.begin.end

I State (3)

Bad executions:

I begin.end .reset.begin

I State (2)

The monitor reports a violation if and only if there is a jump
attack (sound & complete).
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Some other on-going work

Attack detection in IoT

I existing counter-measures are from smart-card domains

I IoT node behavior rather “predictable”, less data dependent

→ lightweight supervised ML

Cross-analysis of SW and Physical robustness results

3 evaluation levels addressed in the project:

I source/LLVM level (Lazart)

I binary code level (Celtic)

I physical attacks

→ how to combine them for development/certification purposes ?
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Thanks for your attention . . .
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Attack Detection in IoT
I Why: many counter-measures are from the smart-card domain

I Expensive in cost and power consumption
I Stack-up counter-measures for the increasing number of attacks
I Products 2-3 years life-long −→ IoT devices: more than 10 years

I What: active security = detection of attack and adequate reaction
I Model the application behavior, and detect deviations −→ supervised

machine learning (no costly neural-networks)
I IoT nodes are rather “predictable”, unlike host IDS

I Differentiators −→ low-cost/low-power detection of combined attacks
I No need for training with attack data (in theory)
I Potentially unknown attacks
I Programmable solution
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