

Département Microélectronique

EM fault Modelling : the sampling fault Model explained

MIC

M. Dumont, M. Lisart, P. Maurine

23 Mai 2019

- State of the Art & the Sampling fault model
- Lessons from EM Induction theory
- Modeling
 - Impact of an EMFI on the power and ground grids
 - Impact of an EMFI on IC operation
- Lessons to design robust ICs
- Lessons to design efficient EMFI platforms
- Conclusion

State of the Art

1		life.augmented	
2002	EM injection disrupts the behavior of embedded memories	'Eddy current for Magnetic Analysis with Active Sensor' (Esmart 2002)	LIKPIP
		'Optical and EM Fault-Attacks on CRT-based RSA: Concrete Results'	
2007	EM injection disrupts the course of a RSA algorithm	(Austrochip 2007)	
2009	Harmonic EM Injection modifies the <i>propagation delays</i> of logical paths	'Assessment of the Immunity of Unshielded Multicore Integrated Circuits to Near Field Injection' (EMC-Zurich 2009)	
2011	Harmonic EM Injection modifies the oscillating Frequency of an internal clock generator	'Local and Direct EM Injection of Power Into CMOS Integrated Circuits' (FDTC 2011)	
2012	Harmonic EM Injection modifies the behavior of RO based TRNG (phase locking)	'Contactless Electromagnetic Active Attack on Ring Oscillator Based True Random Number Generator' (COSADE 2012)	
2012	EM pulse Injection produces <i>timing faults</i> during the course of hardware cryptographic modules	'Injection of transient faults using electromagnetic pulses - Practical results on a cryptographic system' (ePrint 2012)	
2012	EM pulse Injection produces <i>timing faults</i> during the course of hardware and software	'Electromagnetic Transient Faults Injection on a Hardware and a Software Implementations of AES' (FDTC2012)	
2014	Evaluation of a countermeasure based on the <i>timing slack monitoring</i>	'Efficiency of a Glitch Detector against Electromagnetic Fault Injection' (DATE 2014)	
2014	EM injection does not induce only <i>timing faults</i>	'Evidence of a Larger EM-Induced Fault Model' (Cardis 2014)	
2016	EM injection induces Sampling Faults	'A fully-digital EM pulse detector' (DATE_2016)	
2016	A low cost digital EMFI detector based on the Sampling Fault Model	'Electromagnetic fault injection: the curse of flip-flops' (J. Cryptographic Engineering 2017)	

Sampling Fault Model

life.augmented

LIRMN

Electromagnetic fault injection: the curse of flip-flops. (J. Cryptographic Engineering 2017)

EM Induction : basics and implications related to EMFI

Impact of EMFI on the power and ground grids

Modeling @ Phyiscal level

life.augmented

LIRMM

EM Induction on the power & ground grids

EM Induction on the power & ground grids : Swing

EM Induction on the power & ground grids

But there is no reason to have symetric EM couplings and plenty to have asymetric ones:

- probe position
- probe geometry
- asymetric geometries of power and ground networks

- ...

Impact of EMFI on IC operation

Modeling @ Logical level

Impact of EMFI on IC operation: simulation testbench

- all elements experience the same perturbation
- D_{ref} stable (no timing fault possible)
- observation of 1 rising clock edge

life.augmented

Impact of EMFI on IC operation: Amplitude Variation

How EM faults occur ?

- 2nd EM pulse controls the wake up phase

Importance of fine timing tuning EMFIs - required time resolution ~100ps

How EM faults occur ?

Testchip 40nm

Hardware AES

Controllable clock

How demonstrate the soundness of the modelling ??

EMFI pollutes measurements at several meters from the DUT ...

Look for indirect experimental evidences

Look for indirect evidences

- Vary EMFI settings in simulation and experimentations
- Compare simulated and experimental trends

Simulations predict periodical sampling fault windows of constant width with period equal to T_{CK}

Experiments confirms this prediction despite the jitter (1.5ns) of the voltage pulse generator (SFW ~5 to 6ns)

Model predicts sampling fault width is independent of PW, the width of the pulse applied to the probe

Experiments confirms this prediction ...

Simulations predict :

- a threshold on V_{pulse} to induce fault

- an increase of the width sampling fault windows with V_{pulse}

Experiments confirms this prediction ...

- explanation on how EM faults occur (@least on μ C)
 - EMFI locally freezes and wakes up the supply voltage
 - Induction of sampling faults
 - Sampling faults occur during the supply voltage recovery
- Guidelines for the design of more robust ICs
- Perspectives :
 - enhanced EMFI platforms to target SoC
 - modeling EM faults in SoC context with current EMFI platforms